Selective dehydrogenation/oxygenation of 3-methylindole by cytochrome p450 enzymes.
نویسندگان
چکیده
3-Methylindole (3 MI) is a selective pulmonary toxicant, and cytochrome P450 (P450) bioactivation of 3 MI, through hydroxylation, epoxidation, or dehydrogenation pathways, is a prerequisite for toxicity. CYP2F1 and CYP2F3 exclusively catalyze the dehydrogenation of 3 MI to 3-methyleneindolenine, without detectable formation of the hydroxylation or epoxidation products. It was not known whether 3 MI is simply an excellent dehydrogenation substrate for all P450 enzymes, or whether certain cytochrome P450s responsible for 3 MI bioactivation have unique active sites that only catalyze the dehydrogenation of the molecule, while other P450s would catalyze only the oxygenation of 3 MI. Therefore, the kinetics of product formation by the CYP2F1 and CYP2F3 enzymes were compared with other cytochrome P450 enzymes. The enzymes tested were CYP1A1, CYP1A2, CYP1B1, and CYP2E1. The CYP1A1 and CYP1A2 enzymes produced all three 3 MI metabolites: the dehydrogenation product, 3-methyleneindolenine (V(max)/K(m) = 4 and 22, respectively); the hydroxylation product, indole-3-carbinol (V(max)/K(m) = 42 and 100, respectively); and the epoxidation product, 3-methyloxindole (V(max)/K(m) = 4 and 72, respectively). These CYP1A enzymes catalyzed oxygenation of 3 MI at much faster rates than dehydrogenation. CYP1B1 produced indole-3-carbinol (V(max)/K(m) = 85) and 3-methyloxindole (V(max)/K(m) = 7), and CYP2E1 only produced 3-methyloxindole (V(max)/K(m) = 98), but neither enzyme catalyzed the formation of the dehydrogenated product. Six additional P450 enzymes that were tested formed none of the dehydrogenation product. The ability of the various CYP1 family enzymes to catalyze the formation of all three major 3 MI metabolites, along with the specific oxygenation by CYP2E1, illustrates that dehydrogenation of 3 MI is not a substrate-directed process, but that the members of the CYP2F family possess unique active sites that specifically catalyze only the dehydrogenation mechanism.
منابع مشابه
Short Communication SELECTIVE DEHYDROGENATION/OXYGENATION OF 3-METHYLINDOLE BY CYTOCHROME P450 ENZYMES
3-Methylindole (3 MI) is a selective pulmonary toxicant, and cytochrome P450 (P450) bioactivation of 3 MI, through hydroxylation, epoxidation, or dehydrogenation pathways, is a prerequisite for toxicity. CYP2F1 and CYP2F3 exclusively catalyze the dehydrogenation of 3 MI to 3-methyleneindolenine, without detectable formation of the hydroxylation or epoxidation products. It was not known whether ...
متن کاملShort Communication SELECTIVE DEHYDROGENATION/OXYGENATION OF 3-METHYLINDOLE BY CYTOCHROME P450 ENZYMES
3-Methylindole (3 MI) is a selective pulmonary toxicant, and cytochrome P450 (P450) bioactivation of 3 MI, through hydroxylation, epoxidation, or dehydrogenation pathways, is a prerequisite for toxicity. CYP2F1 and CYP2F3 exclusively catalyze the dehydrogenation of 3 MI to 3-methyleneindolenine, without detectable formation of the hydroxylation or epoxidation products. It was not known whether ...
متن کاملMechanism-based inactivation of lung-selective cytochrome P450 CYP2F enzymes.
3-Methylindole (3MI) is a pneumotoxin that requires P450-catalyzed metabolic activation (dehydrogenation), to an electrophilic methylene imine to elicit toxicity. Previous studies have shown that the human pulmonary cytochrome P450 enzyme, CYP2F1, and its goat analog, CYP2F3, catalyzed the dehydrogenation of 3MI. However, it was not known whether the dehydrogenation product could bind to active...
متن کاملCharacterization of pulmonary CYP4B2, specific catalyst of methyl oxidation of 3-methylindole.
The selective toxicity of chemicals to lung tissues is predominantly mediated by the selective expression of certain pulmonary cytochrome P450 enzymes. This report describes the purification, cloning, and characterization of a unique enzyme, CYP4B2, from goat lung. The purified P450 enzyme was isolated by multistep ion exchange chromatography to electrophoretic homogeneity with an apparent mole...
متن کاملThe roles of different porcine cytochrome P450 enzymes and cytochrome b5A in skatole metabolism.
Boar taint is the unfavourable odour and taste from pork fat, which results in part from the accumulation of skatole (3-methylindole, 3MI). The key enzymes in skatole metabolism are thought to be cytochrome P450 2E1 (CYP2E1) and cytochrome 2A (CYP2A); however, the cytochrome P450 (CYP450) isoform responsible for the production of the metabolite 6-hydroxy-3-methylindole (6-OH-3MI, 6-hydroxyskato...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Drug metabolism and disposition: the biological fate of chemicals
دوره 29 7 شماره
صفحات -
تاریخ انتشار 2001